JOHANNES KEPLER UNIVERSITÄT LINZ

CATALYST DESIGN FOR THE DIRECT ELECTROCATALYTIC CO_2 REDUCTION REACTION (e- CO_2 RR)

Prof. Dr. Wolfgang Schöfberger Institute of Organic Chemistry, Johannes Kepler University Linz (JKU) Altenberger Straße 69, 4040 Linz, Austria.

Email: wolfgang.schoefberger@jku.at

https://www.jku.at/institut-fuer-organische-chemie/team/schoefberger-lab/

RESEARCH

Catalyst Design for Heterogeneous (photo-)electrocatalysis

- Water Oxidation Reaction (WOR)
- Oxygen Reduction Reaction (ORR)
- Hydrogen Evolution Reaction (HER)
- Nitrogen Reduction Reaction (NRR)

 Electrocatalytic CO₂ Reduction Reaction (e-CO₂RR) - from flue-gas to Syngas, Ethylene, Formic acid, Methanol, Ethanol, Acetic acid

ELECTROCATALYTIC CO_2 REDUCTION REACTION (e- CO_2 RR)

CATALYTIC CONVERSION OF CO₂ TO VALUE ADDED COMPOUNDS

Publications

- Electrocatalytic Reduction of CO₂ to Acetic Acid by a Molecular Manganese Corrole Complex, R. De, S. Gonglach, S. Paul, M. Haas, F. Pillwein, S. S. Sreekumar, P. Gerschel, U.-P. Apfel, H. Vuong, J. Rabeah, S. Roy*, and W. Schöfberger*, *Angew. Chem.* 2020, 59, 26, 10527-10534. https://doi.org/10.1002/anie.202000601
- Co-function of protons as dopant and reactant activate the electrocatalytic hydrogen evolution in emeraldine-polyguanine, H. Coskun*, A. Aljabour, W. Schöfberger, A. Hinterreiter, D. Stifter, N. S. Sariciftci, and P. Stadler, Adv. Mat. Interfaces 2019, 1901364. https://doi.org/10.1002/admi.201901364
- 3. Molecular Cobalt Corrole Complex for the Heterogeneous Electrocatalytic Reduction of Carbon Dioxide, S. Gonglach, S. Paul, M. Haas, F. Pillwein, S. S. Sreekumar, S. Barman, R. De, S. Müllegger, P. Gerschel, U.-P. Apfel, H. Coskun, A. Aljabour, P. Stadler, W. Schöfberger*, and S. Roy*, *Nat. Commun.* 2019, 3864. https://doi.org/10.1038/s41467-019-11888-5
- 4. Biofunctionalized conductive polymers enable efficient CO₂ electroreduction, H. Coskun, A. Aljabour, A. P. de Luna, D. Farka, T. Greunz, D. Stifter, M. Kus, X. Zheng, M. Liu, A. W. Hassel, W. Schöfberger, E. H. Sargent, N. S.Sariciftci, P. Stadler, *Sci. Adv.* 2017, 3:e1700686 https://doi.org/10.1126/sciadv.1700686
- 5. CO₂ Fixation with Epoxides under Mild Conditions with a Cooperative Metal Corrole Quaternary Ammonium Salt Catalyst System, M. Tiffner, S. Gonglach, M. Haas, W. Schöfberger*, and M. Waser*, *Chem. Asian J.* 2017, 12(10), 1048-1051. https://doi.org/10.1002/asia.201700354

ELECTROCATALYTIC CONVERSION OF CO2 TO VALUE ADDED FUELS

MARKET VALUE

Ethylene = \$ 182B Ethanoic Acid = \$ 77B Methanol = \$ 64B Methane = \$ 45B Carbon Monoxide = \$ 9B Formic Acid = \$ 400M

CATALYST DESIGN

period 1	The Periodic Table of the Elements												18 4.002402 2 Helem					
2	6.941 on 3 Lin Uffium	Beylium	or mosts 1st ionis cher	nable moss numbe zation energy in kJ/mi mical symbo		e 8	0 +4 +3 +3 +2 +1	lectronegativi	ty alka	line metals r metals sition metals	halogen	als s oses	Boren 10.811 x 5 Boren 1/2 2/2/	12.0107 Conton Conton 1/ 2/12/	14.0067 1403 8 8 7 Nitrogen 14'24'19'	00000000000000000000000000000000000000	18.998403 9 14810 3.88 Photice 14734734	20.1797 10 Nem / Nego 1/2/2/2/
3	22.96976 11 Na Sodium MC32 39.0993 10	Magnesion Notice	electron o	nomi configuration		# 45 ²	-2 -2 -2	c SS 845 0.4		noids	reductive resists in pe	12	Autinium Marinium Marinium Marinium	28.0855 5600 M 5/3/	Phosphorus	Scoller PH 5/10*	25.453 13112 2.11 Officine MI 37.54 20.904 2.6	Argon Argon 183,298, 24
4	Potossium Potossium Potossium Potos 37	Coldum Roter B7.62 38	Scondum 96307-02 88.90585-30	Tronium Pitorium	Vanadium Natadium	Chromium Pitter 40	Manganese Handrad	Fe hon him of	Cobol Relative	Nickel Nickel 1413/* 4/	Copper PESS" 40	Zn 5-41 48	Gallum Ritter 4/40	Germanium 94130* 47 40	Arsenic R130*4/40 121.760 51	Selerium Re30*4/40 127.40 52	Br Bonine BONING 4747	Kr Krysten 36130*******
5	Rb Rubidium N:57 132.9054 55	Storfun Noter 137.327 56	Ythium X04750 174.9668 71	Zr 5rconium 8149 50 178.49 72	Nobium 8147 50 180.9478 73	Molytidenum Riter SV 183.84 74	Technetium R(47.50) 186.207 7	5 190.23 76	Rh Rhodum 8147 57	Pd Pollodium 8(45* 195.084 78	Ag Slieg 196.9665 79	Codmum Risk************************************	In Indum X040756750 204.3833 81	Sn 101 - 101	Sb Antirrony 814/**5/5/	Te tellurium Ricket* 54'54'	lodine Rokri 5/ 5/	Xenon Krist*fs*fs*
6	Caeskum McGr (223)	Balan Bolum Pictor (224) Mora 0.00 88	Luterium pic #** 56 67 (262) 103	Hotsium Re(#** 56" 60" (261) 104	Ta Tantalum (141 Million (262) 105	V Tungsten (264) 106	Re Polerium (264) 10	Osman Net #15 Mar 62 7 (277) 108	r hidum pictrational (268) 109	Pt Potrum 36(4750767 (271) 110	AU Gold (272) 111	Hg Net 1 1 1 2 (285) 112	ThoTium No. 275 07 67 67 (284) 113	Pb (41************************************	Bi Barruth (288) 115	Po Polonium (292) 116	At Addition Dicentist action 117	Rn Roden Not at 1 Mar Not Aut (294) 118
7	Fr Minister Minister	Radium HC TO Hectran configurat	Lowencium Bit String Ty	Reference Bit Strate 200	Dubrium	Segue	Bh	Hossium	Mt	Dormstodium	Rg	Copernicium	Unution	Ununquadidam	Ununpentium	Unurhesium	Unurseptium	Ununocium
	s d		P	138.90 SSL 1 Lawfran Joe Strate	54 57 18 57 19 58 4 19 58 4 58 4 58 4 58 4 58 4 58 4 58 4 58 4	6 58 140.90	144. 5311 19 Ness Ness Ness	242 60 (145) Id 37 Pn dym.um	61 190.3 544.5 Sarras	62 151.9 n ³ Eu	64 63 157.25 38.4 1 4 Gadelin 2 Gadelin 2 Gadelin	20 64 158.92 563.5 563.5 Tb Tertsion 563.9	102.50 5710 1 2710 1 2710 1 0700 1	0 66 164.93 510 510 510 510 510 510 510 510 510 510	03 67 167.23 D Er	(% 68 148.9 5%) Thulu p(4%)	n 173.05 N 125 69 173.05 N 175.05 N 175	4 70
	notes • es of y efficia • 1 kl/m	et, elements 113- I name designated val = 96.485 eV	118 have no I by the IUPAC.	Activity	89 232.0	100 90 2231.03 100 Page	158 91 238. 197 3 nium Unge	1289 92 (237) 138 92 (337) 138 92 (337)	93 244 D Pu	94 (243) Ann	n 95 Cr	n ⁹⁶ Bk	397 (251) 30	98 (252) Es	99 (257) 17 Fn	100 2551 n M	a 101 (259) d 11 Notes	102 2

J⊻U

CATALYST DESIGN

METAL-POLYMER ELECTRODES

prepared by co-electrodeposition.

Each electrode comprises

a carbon-fibre-paper-based gas diffusion layer (GDL) substrate on which the catalyst is electrodeposited.

Cu–Pi electrode is prepared in a plating bath containing e.g. 3 mM CuSO₄, 12 μ M Pi, 0.1 M Na₂SO₄ and 0.5 M H₂SO₄.

JYL

Electrochemical properties and ECO₂RR performance of Cu₂O nanoparticles. e) FE values of the products on F-Cu₂O.

Electrochemical properties and ECO₂RR performance of F-Cu₂O@ZIF-8. FE values of all products for F-Cu₂O@ZIF-8.

Electrochemical activities of m-Cu NP and c-Cu NP (a) LSV curves of c-Cu and m-Cu nanoparticles. (b) Faradaic efficiencies (FE) of the m-Cu NP, and (c) FE of c-Cu NP electrode for different products at the applied V.

HETEROGENEOUS CO₂ ELECTROREDUCTION

Preparation of the working electrode: drop coating

Co-Corrole modified carbon paper/ Ag/AgCl/ Pt, 0.1 M NaClO_{4,} phosphate buffer, pH=6, 100 mV s^{-1}

MONTANUNIVERSITÄT LEOBEN, 06.07.2022

TEST FACILITY

OPTION 1: FLOW CELL

OPTION 1: FLOW CELL

OPTION 1: FLOW CELL

CELL STACK TO INCREASE EFFICIENCY

----> Catholyte flow

MONTANUNIVERSITÄT LEOBEN, 06.07.2022 Full cell stack

J⊻U

OPTION 2: ZERO-GAP CELL

ELECTROCATALYTIC REDUCTION OF HUMIDIFIED CO2 GAS

CRVO PLATFORM

0000 00 0

J⊻U∦

-

100

BRUKER

Ascend^m 700

MONTANUNIVERSITÄT LEOBEN, 06.07.2022

ANALYTICS: GASCHROMATOGRAPHY OF GASEOUS SAMPLES

LU.

WHA

Am

He 11!

MONTANUNIVERSITÄT LEOBEN, 06.07.2022

19/20

CEO

FARADAIC EFFICIENCY (FE) CALCULATION

Faraday efficiency (also called faradaic efficiency, faradaic yield, coulombic efficiency or current efficiency) describes the efficiency with which charge (electrons) are transferred in a system facilitating an electrochemical reaction.

 $Q_{total} = I \times f$

I: applied current (A) t: time (s)

 $FE_{CO} = Q_{CO}/Q_{total} \times 100\%$

Q_{total}: total electric quantity (C) FE_{CO}: faradaic efficiency of CO Q_{CO}: CO consumed electric quantity

¹H NMR SPECTRUM OF LIQUID PRODUCTS:

4 HOURS ELECTROCATALYSIS

RESULTS: COBALT CORROLE

"Co-Corrole"

nature communications

Explore content ~ About the journal ~ Publish with us ~

nature > nature communications > articles > article

Article Open Access Published: 27 August 2019

Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide

Sabrina Gonglach Shounik Paul Michael Haas, Felix Pilheein Streekumar 5. Streekith. Soumitra Barman Batnadio Die Stefan Mülleoper, Philipo Gerschel, UK-Peter Aarfel Halime Coskun: Abdelazis Ajabour, Philipo Stadler, Wolfgang Schöfberger (¹³⁾ & Soumreit, Roy ⁽¹³⁾

Noture Communication: 10, Article number: 3864 (2019) | <u>Cite this article</u> 12k Accesses | 57 Citations | 43 Altmetric | <u>Metrics</u>

Abstract

Electrochemical conversion of CO₂ to alcohols is one of the most challenging methods of conversion and storage of electrical energy in the form of high energy fuels. The challenge lies in the catalyst design to enable lies real-life implementation. Herein, we demonstrate the synthesis and characterization of a cobalt(III) tripheny/phosphine corrole complex, which contains three polyethylene glycol residues attached at the meso phenyl groups. Electrondonation and therefore reduction of the cobalt from cobalt(III) to cobalt(II) complex. The cobalt(I) as an electron rich supernucleophilic d²-configurated metal centre, where two electrons occupy and III up the antibonding d²-orbital. This orbital possesses high affinity towards electrophiles, allowing for such electronically configurated metal reactions with carbon dloxide. Herein, we report the potential dependent hererogeneous electropeduction for CD_ technol or methanol of an immobilized cobalt A₃ corole catalyst system. In moderately acidic aqueous medium (pl4 = 60), the cobalt corrole modified carbon paper electrode ethibits a Faradde Elficiency (FE) of 48 towards ethanol production. From: Molecular cobalt corrole complex for the heterogeneous electrocatalytic reduction of carbon dioxide

Potential V vs. RHE	Faradaic Efficie 5 h of controlle	Total FE%	Charge passed (Coulomb)						
	CH ₃ CH ₂ OH	CH₃OH	HCOO-	CH ₃ COO ⁻	H ₂	нсон	(CHO) ₂		
	FE%	FE%	FE%	FE%	FE%	FE%	FE%		Avg.
-0.515	-	59	12	-	17	10	-	98	35
-0.585	5	52	10	-	22	6	3	98	36
-0.650	10	45	8	1	27	5	2	98	39
-0.700	23	32	6	4	27	5	2	99	40
-0.730	39	23	5	5	20	3	3	98	42
-0.770	44	14	4	8	26	2	1	99	43
-0.800	48	8	1	10	28	1	3	99	44
-0.855	47	5	-	12	33	-	2	99	47
-0.905	45	3	-	12	37	-	1	98	50
-0.955	47	2	-	13	36	-	-	98	53

^aIn 0.1 M NaClO₄ (0.1 M pH = 6.0 phosphate buffer)

S. Gonglach, S. Paul, M. Haas, F. Pillwein, S. S. Sreekumar, S. Barman, R. De, S. Müllegger, P. Gerschel, U.-P. Apfel, H. Coskun, A. Aljabour, P. Stadler, W. Schöfberger*, and S. Roy*, *Nat. Commun.* 2019, 3864.

https://doi.org/10.1038/s41467-019-11868-5

RESULTS: MANGANESE CORROLE

Potential	FE %	of each	ential	Total	Charge passed							
376	with Mn Cov CD electrode ofter 5h of electrolysis											
və	WI	un min-c	ГЕ~0									
Ag/AgCl										(Coulomb)		
	Acet	ate	Meth	anol	C	0	Н	2]			
	FF0/a	SD	FF0/a	E04 CD EE04 CD EE04 C		SD	-	average	SD			
	FE70	50	FE70	50	FE70	50	FE70	50		average	50	
	10					-						
-1.1	40	4.3	23	3	31	5	-	-	94	6.3	0.2	
-1.2	55	4	20	3	20	4			95	9	0.25	
1 25	63	3 75	16	35			18	4.5	97	14.4	03	
-1.25	05	5.75	10	5.5		_	10			1 7.7	0.5	
1.2	(0	2.55	10	2.5			10	-	0.0	15.1	0.5	
-1.3	60	3.55	19	2.5	-	-	19	5	98	17.1	0.5	
-1.4	61	4	9	3	-	-	25	6	95	19.8	0.8	
		1		1						1		

R. De, S. Gonglach, S. Paul, M. Haas, F. Pillwein, S. S. Sreekumar, P. Gerschel, U.-P. Apfel, H. Vuong, J. Rabeah, S. Roy*, and W. Schöfberger*, *Angew. Chem.* 2020, 59, 26, 10527-10534.

https://doi.org/10.1002/anie.202000601

RESULTS: Cu AND Ag BIANS IN ZERO-GAP CELLS

Ag-BIANs in Zero-gap Cells

• Cell

BIANs in Zero-gap Cells

• BIANs in Zero-gap Cells

Differences in cell voltage between metal centers not so significant

Conditions: Zero Gap Electrode | Ag-BIAN| 0.4 mg cm⁻² | 100 mA cm⁻² | 1h | RT | 1 M KOH

BIANs in Zero-gap Cells

- Electrode & Material properties affect the GDE performance
- BIAN-Electrodes show stable cell voltage during electrolysis

Conditions: Zero Gap Electrode | Ag-BIAN| 0.1-0.4 mg cm⁻² | 100 - 500 mA cm⁻² | 1-72 hrs | RT | 1 M KOH

EXPERIMENTS WITH GAS MIXTURE (GM)

TO MIMIC FLUE-GAS CONVERSION

Gas composition

GM	Contents (Vol.%)
N ₂	71.8
0 ₂	11
СО	0.11
NO _x	0.035
SO ₂	0.001
CO ₂ /N ₂ additional	17

ELECTROLYSIS IN CO₂ GAS MIXTURE

4 HOURS ELECTROCATALYSIS

Experimental Parameters	H ₂ FE %	CO FE %	Liquid FE %	ORR
Cat. CO ₂ GM 20 mA 10 mL/min	30	15	-	55
Cat. CO ₂ GM 40 mA 10 mL/min	30	60	-	10
Cat. C CO ₂ GM 60 mA 100 mL/min	20	45	0.5 (after 4h) methanol	24.5

Syngas production!

WORK IN PROGRESS

DEVELOPMENT AND CONSTRUCTION OF A LABORATORY SYSTEM FOR ACTIVATION AND ELECTROCATALYTIC REDUCTION FROM CARBON DIOXIDE TO C_1 AND C_2 PRODUCTS (AKTUROS)

Team

Scientific Collaborations

THANK YOU!

