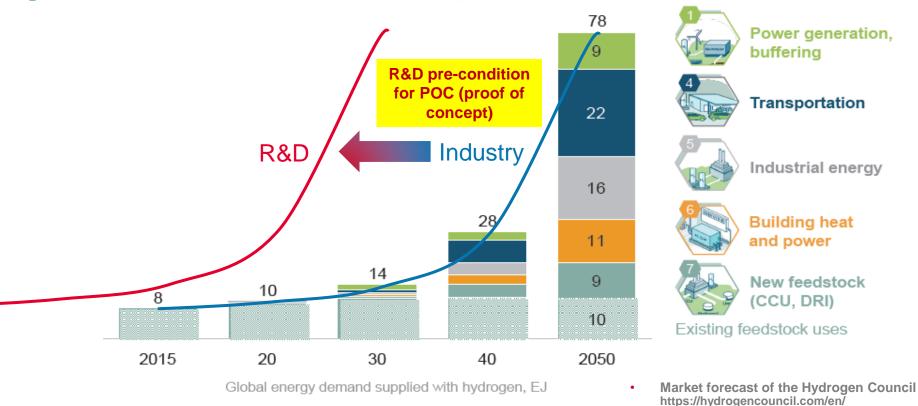
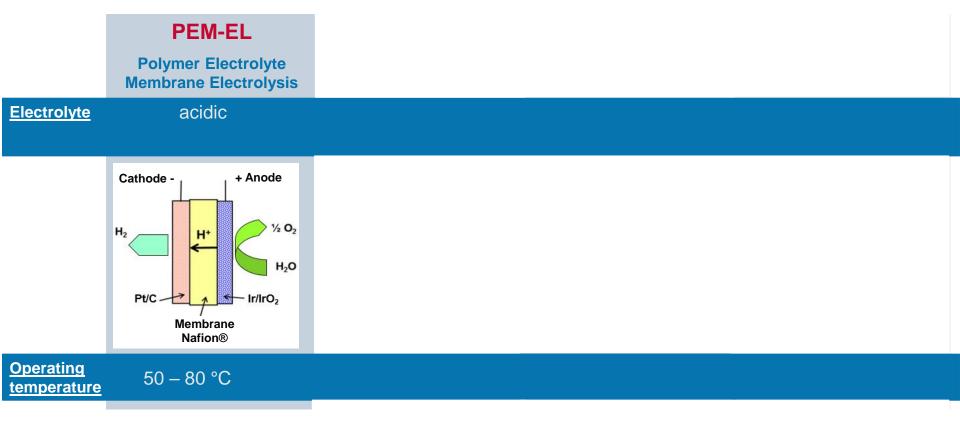


Elektrolyse und Photoelektrolyse Stand der Technik und Potenziale

DI Dr. Marie-Gabrielle Macherhammer


Graz, 06.09.2022

Hydrogen Economy



"H₂ has a long-term potential of 20-30 % of all energy sources"

Electrolysis – technology comparison

The information contained in this presentation remains the property of HyCentA.

Source: Hydrogen Production by Electrolysis Wiley VCH Slide 2

HyCentA **PEMEL** – state of the art & future targets

	2022	2050
Current density	1-3 A/cm ²	4-6 A/cm ²
Voltage range limit	1.4 – 2.3 V	< 1.7 V
Cell pressure	< 50 bar	> 70 bar
Load range	5 – 130 %	5 – 300 %
Electrical efficiency (stack)	47 – 66 kWh/kg _{H2}	< 42 kWh/kg _{H2}
Lifetime (stack)	50 000 – 80 000 h	100 000 – 200 000 h
Capital costs stack/system	400 / 700 – 1 400 \$/kW	< 100 / 200 \$/kW

IYDROGEN CENTER AUSTRI

Source: Cummins

Research focus:

Mitigate membrane poisoning/deactivation by foreign elements from components and system

Increase catalyst utilisation of anode and cathode catalyst

Improve kinetics for oxygen evolution using iridium-free catalysts and maintain stability comparable to iridium SoA

AEMEL – state of the art & future targets

		2022		2050	
Current density		0.2 – 2 A/	cm ²	> 2 A/cm ²	
Voltage range lim	it	1.4 - 2.0	V	< 2 V	
Cell pressure		< 35 bar		> 70 bar	
Load range		5 – 100 %)	5 – 200 %	
Electrical efficien	cy (stack)	51.5 - 66	kWh/kg _{H2}	< 42 kWh/kg _{H2}	
Lifetime (stack)		> 5 000 h		100 000 h	
Capital costs stat	ck/system	? \$/kW		< 100 / 200 \$/k	٢W
Research focus:	Developm cost effect for AEM electrolys	tive PTLs	Improve kine hydrogen an evolution an long-term sta	id oxygen d maintain	Incre excha mem durat

Source: Enerstack

AEL – state of the art & future targets

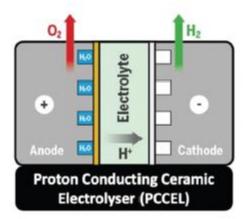
ne

	2022	2050
Current density	$0.2 - 0.8 \text{ A/cm}^2$	> 2 A/cm ²
Voltage range limit	1.4 – 3.0 V	< 1.7 V
Cell pressure	< 30 bar	> 70 bar
Load range	15 – 100 %	5 – 300 %
Electrical efficiency (stack)	47 – 66 kWh/kg _{H2}	< 42 kWh/kg _{H2}
Lifetime (stack)	60 000 h	100 000 h
Capital costs stack/system	270/500 – 1 000 \$/kW	< 100 / 200 \$/kW

Research	High catalyst	Improve kinetics for hydrogen	Eliminate mechanical degradation
tocus:	surface area	and oxygen evolution with novel	of catalyst layers (delamination,
	> 50 m²/g	nickel-based alloys	dissolution)

SOEC – state of the art & future targets

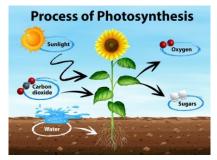
	2022	2050
Current density	0.1 – 1.0 A/cm ²	> 2 A/cm ²
Voltage range limit	1.0 – 1.5 V	< 1.48 V
Cell pressure	1 bar	> 20 bar
Load range	30 – 125 %	0 – 200 %
Electrical efficiency (stack)	35 – 50 kWh/kg _{H2}	< 35 kWh/kg _{H2}
Lifetime (stack)	< 20 000 h	80 000 h
Capital costs stack/system	> 2 000/? \$/kW	< 200 / 300 \$/kW


Source: Sunfire

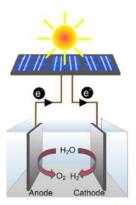
Research	Reduce	Understanding and controlling	Improve the electrolyte
focus:	temperature to be	electrochemical degradation	conductivity matching the
	able to use lower	and thermo-mechanical	thermal expansion coefficient
	cost materials	stability	of both electrodes

PCCEL – state of the art & future targets

	2022
Current density	0.1 – 1.9 A/cm ² (@1.3 V)
Temperature	300 – 600 °C
Electrolyte	(Y,Yb)-Doped-Ba(Ce,Zr)O _{3-δ}
Catalyst (oxygen site)	Perovskite-type
Catalyst (hydrogen site)	Ni/YSZ, Ni-BZY/LSC, BCFYZ
Cell pressure	1 bar
Lifetime (stack)	?
Capital costs stack/system	?

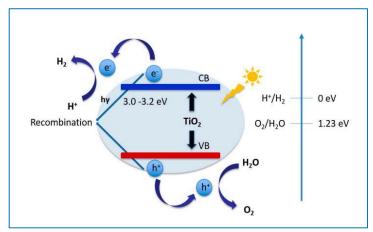


Source: DOI: 10.1039/d0cs01079k


Photoelectrolysis / Photolysis

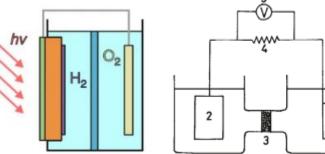
- Conventional design coupling of electrolysis and renewable energies
- Alternative: based on photosynthesis
 - Direct water splitting with sun light
 - Photocatalysis: photocatalytical water splitting uses photons to split water directly into its components hydrogen and oxygen
 - **Photoelectrochemical water splitting**: based on the same principle but additional electrodes are introduced
 - Direct PV/electrolysis coupling: two different systems

Source: https://www.sciencesparks.com/what-is-photosynthesis/


Source: 10.1016/j.enchem.2019.100014

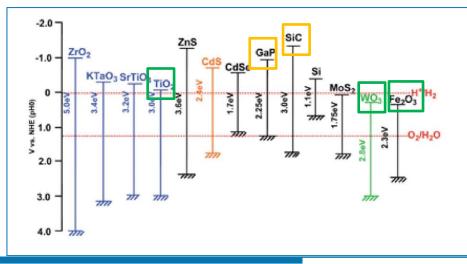
Photocatalytical water splitting

- Photons split water into H₂ and O₂: $H_2O + 2h\nu \rightarrow H_2 + \frac{1}{2}O_2$
- Photons with $E > E_G$ is absorbed, e⁻ jumps from VB to CB
- Absorption of light → electron-hole-pair is produced in photoactive semiconductor particle e.g., TiO₂
- Separation of charge, transport of e⁻, h⁺ important →
- Reduction and oxidation of water
- Solar-to-Hydrogen (StH) efficiency
 - Rarely higher than 1% at PCWS


$$\mathrm{STH} = rac{\mathrm{Total\ energy\ generated}}{\mathrm{Total\ energy\ input}} = rac{\Delta Gr_{\mathrm{H}_2}}{P_{\mathrm{sun}}\,S},$$

Source: https://doi.org/10.3390/molecules21070900

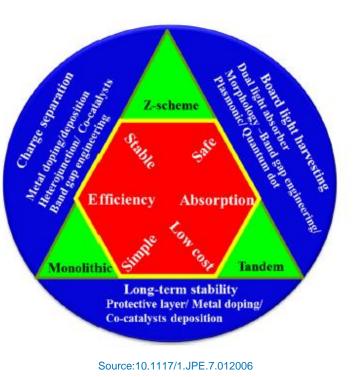
- Again, photons are used for water splitting
- One cell consists of: 2 electrodes, photoanode + (photo)cathode, electrolyte and membrane
- Simple cell: TiO₂/Pt cell of Honda & Fujishima ("S2": single-absorber, 2 photons)
- Solar to Hydrogen efficiency
 - 3-5 % (unassisted)
 - higher than 12 % (applied bias)


Source: 10.1038/ncomms12681

Source: https://doi.org/10.1038/238037a0

Materials for photoelectrodes

- Photocathode
 - Reduction of water H⁺/H₂
 - P-type semiconductor
 - Interesting materials: GaP, SiC

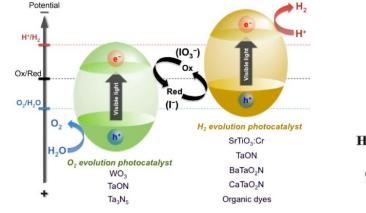


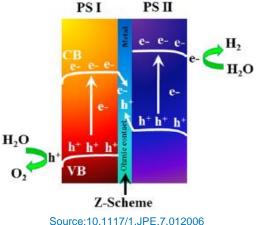
Photoanode

- Oxidation of water $-O_2/H_2O$
- N-type semiconductor
- Examples of promising photoanodes include monometallic oxides (TiO₂, ZnO, WO₃, and α-Fe₂O₃), bimetallic oxides (BiVO₄), and metal (oxy)nitrides (Ta₃N₅ and TaON).

Optimisation of PEC

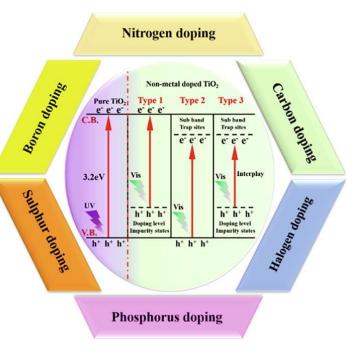
- Z-scheme
- Surface modification
- Nanostructures / mesoporous surfaces
- Heterojunction
- Solid solutions (mixed crystal)
- Dye-modified surfaces


Biological photosynthesis – Z scheme


- Nature leads the way Photosynthesis
- It is difficult to find one semiconductor, which can provide the necessary bandwidth → combination of two materials

• Two reactions

- Reduction of H⁺/H₂
- Oxidation of H₂O/O₂



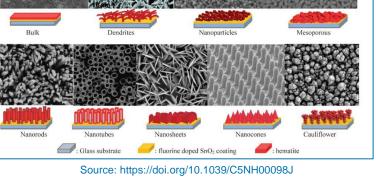
Source: https://doi.org/10.1016/j.jphotochemrev.2011.02.003

Surface modification

- Doping of PEC
 - Narrowing of bandwidth
- Addition of co-catalysts like Pt, IrO₂, ...
 - Alternative to PGM materials: Metal sulphides
- Plasmonic metal nanostructures like
 - Au/TiO₂ nanostructures

Doping for TiO₂ Source: <u>https://doi.org/10.1016/j.jechem.2021.08.038</u>

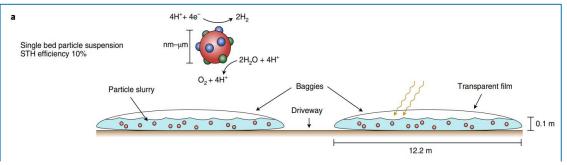
1D, 2D & 3D nanostructures help especially with n-type semiconductors


Nanostructures

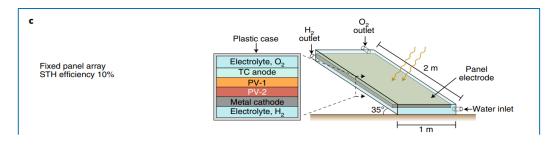
1D: Nanowires, nanorods and nanotubes

Avoids high numbers of an charge recombination

- 2D: Nanosheets with high specific surface area and crystallinity
- 3D: integrated different functional materials of 1D or 2D structures to construct 3-D hierarchical nanostructures
- increase large surface areas for light harvesting without inhibiting charge transfer and separation



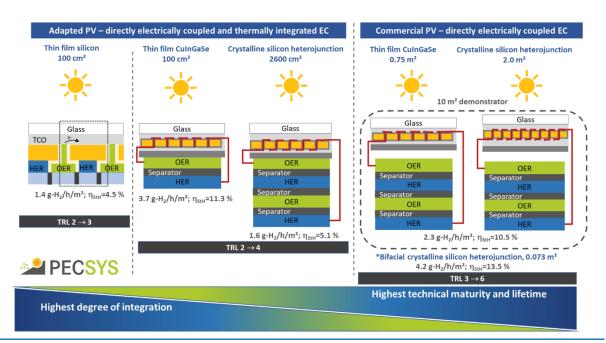
Reactor design photocatalysis



- a) Type 1, reduction and oxidation of water happens on the same particle; gas is collected at the top, needs purification
- b) Type 2, two different bags for O₂ and H₂ production, needs membrane and redox mediator (e.g. Br, I, Fe complex)

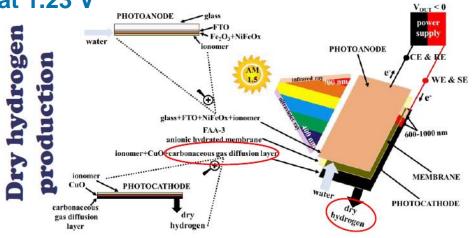
Reactor design photoelectrochemical cell HycentA

- c) PEC panel including planar electrodes and photoactive layers; separation of gas due to different outlets
- d) PEC panel with additional concentrator to increase light intensity



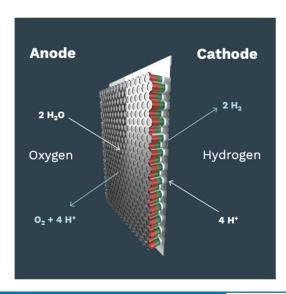
EU PECSYS Project

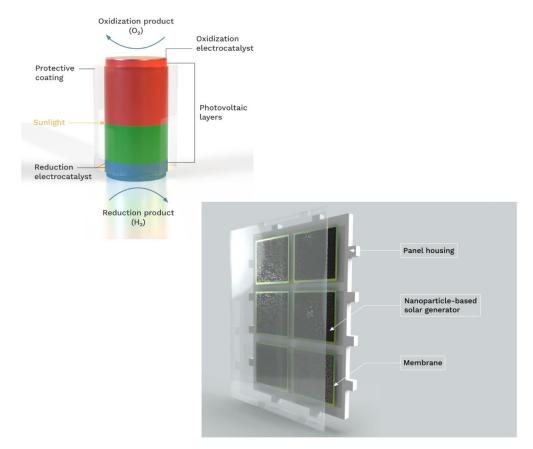
The PECSYS consortium used predominantly low-cost, established photovoltaic (PV) technologies directly coupled to electrolyser units, instead of photoelectrochemical devices, for water splitting.


PECSYS Technology demonstration of large scale photo-electrochemical system for solar hydrogen production

EU Project FotoH2

- Non-noble photoelectrodes
 - Hematite (anode) and cupric oxides (cathode)
 - Anion exchange membrane
- Applied bias: 10 % throughput efficiency at 1.23 V




FotoH2 Panel Glass Electrode Membrane Assembly (GEMA) concept

SunHydrogen Inc.

- Based on Z-scheme (p/n junction), added co-catalysts and membrane
- Materials unknown

Kontakt HyCentA Research GmbH Hycento Inffeldgasse 15 A-8010 Graz DRIVING THE SUSTAINABLE HYDROGEN SOCIET +43 316 873 9500 office@hycenta.at www.hycenta.at