

Bioenergy and Sustainable Technologies

Competence Centers for Excellent Technologies

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

BEST Syngas Platform Vienna

Making a concept into reality

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

2

	O) BEST
Target	Production of syngas from biomass and waste and downstream synthesis
Scale	1 MW DUAL FLUID gasification 250 kW Fischer-Tropsch synthesis
Operation	Campaigns for research operation
Fuel	wood chips, sewage sludge, plastic waste, sorted waste, agricultural residues

Syngas from DFB gasification

1 e.g. tar (incl. BTEX): 20-30g/m³, H₂S ~100 ppm for biomass fuel before any gas cleaning for downstream processing 2 Synt

2 Synthesis gas = cleaned from impurities

Location Overview

08.09.2022

Creating a versatile research location Part 1

Creating a versatile research location

Creating a versatile research location Part 3

Syngas Platform Vienna

Versatile operation in DFB system

Process chain for syngas conversion to hydrogen

Container-size hydrogen process chain

Container-size hydrogen process chain

Different process chain: Fischer-Tropsch synthesis

Bundesministerium Digitalisierung und Wirtschaftsstandort

💳 Bundesministerium Klimaschutz, Umwelt,

Für die Stadt Wien anstigle der Präsentation

Goal: complete process chain from gasification to synthesis First experiment: end of 2022

1 MW DFB gasifier

250 kW Fischer-Tropsch synthesis

Slide 16

Experiment: Full process chain

Target	gas cleaning, operation stability PLUS fine gas cleaning, Fischer-Tropsch synthesis and analysis of syncrude	
Scale	1 MW DFB gasification + 250 kW Fischer-Tropsch synthesis	
Set-up	Long-term operation to minimize risk in industrial scale	
Operation	Operation Campaigns for research operation (3-4 weeks)	

	C	D) BEST
	et	Production of syngas from biomass and waste and downstream synthesis
	е	1 MW DUAL FLUID gasification 250 kW Fischer-Tropsch synthesis
Operation of the second s	ation	Campaigns for research operation
Fuel		wood chips, sewage sludge, plastic waste, sorted waste, agricultural residues