

Electrolyzer technology insight: Elektrolysetechnologien aus der Sicht eines weltweiten Herstellers?

06 September 2022, Christoph Zahn Sales Manager - Electrolyzers

CUMMINS

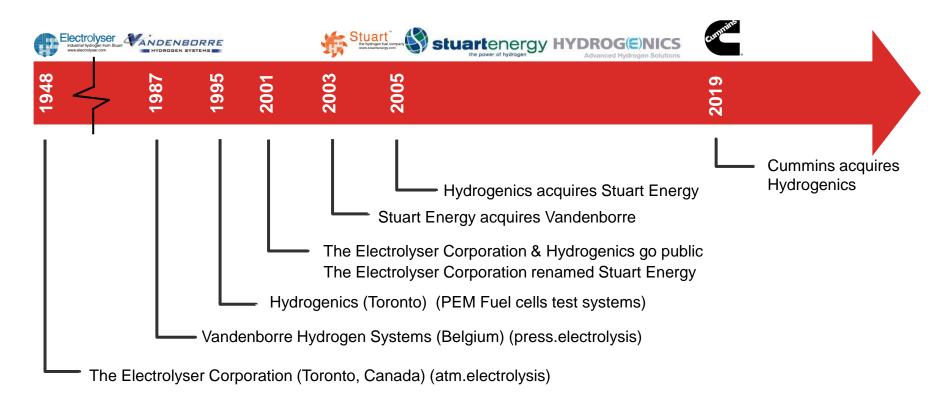
59.9K Global Employees

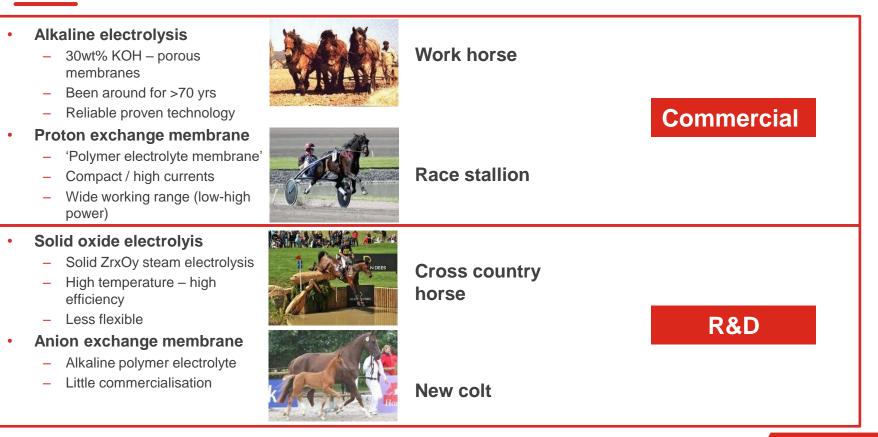
1.3M+ Engines built

10.6K Distributor & dealer locations

Â

\$1.1B


Invested in research & development



*2021 figures

WATER ELECTROLYSIS Hydrogenics History

WATER ELECTROLYSER TECHNOLOGIES AT CUMMINS

3

4

Electrolysers: AEC, AEM, PEM and SOE for hydrogen (and syngas) production © 2021 sbh4 GmbH

Source:

SOE

+)__

O²⁻

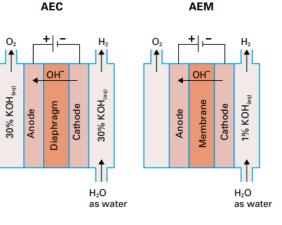
Electrolyte

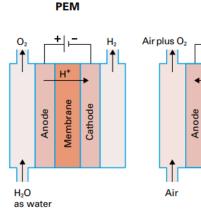
Cathode

H₂O as

steam

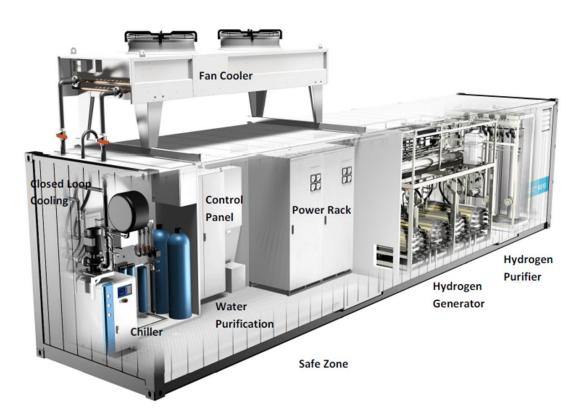
(plus CO₂)


H₂ (plus CO)


http://www.sbh4.de/assets/elec trolyser-aec-aem-pem-soe.pdf

sbh4

- In the AEC, AEM and PEM, lye or water flow from the electrolyser cell with the oxygen and/or hydrogen gases. These liquids are mixed and recirculated to the electrolyser.
- Air is used to purge the SOE anode to avoid oxygen accumulation which may present a hazard at the high operating temperature.
- Bipolar plates made of stainless steel (titanium for PEM) are used to stack adjacent cells in each electrolyser type.



	Alkaline Electrolysis Cell AEC	Anion Exchange Membrane / Alkaline Electrolyte Membrane AEM	Polymer Electrolyte Membrane/ Proton Exchange Membrane PEM/PEMEC	Solid Oxide Electrolysis Cell SOE/SOEC
Electrode material	– Cathode: Ni, Co or Fe – Anode: Ni	– Cathode: Ni / Ni alloys – Anode: Fe, Ni, Co oxides	– Cathode: Pt/Pd – Anode: IrO ₂ /RuO ₂	 Cathode: Ni Anode: La/Sr/MnO (LSM) or La/Sr/Co/FeO (LSCF)
Electrolyte	Lye: 25-30% Potassium Hydroxide solution in water	Anion Exchange ionomer (e.g. AS-4)	Fluoropolymer ionomer (eg Nafion, a DuPont brand)	Zirconium Oxide with ~8% Yttrium Oxide
Energy source	100% electrical power	100% electrical power	100% electrical power	~25% heat from steam, ~75% electrical power
Current density	Up to 0.5 A/cm ²	0.2 – 1 A/cm ²	Up to 3 A/cm ²	Up to 0.5 A/cm ²
Hydrogen or syngas product	Hydrogen	Hydrogen	Hydrogen	Hydrogen (or syngas if fed with steam and CO ₂)
Gas outlet pressure	Up to 40 bar	Up to 35 bar H ₂ , 1 bar O ₂	Up to 40 bar	Close to atmospheric
Cell temperature	~80 °C	~60 °C	~60 °C	~750 to 850 °C

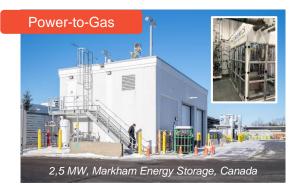
06 Sep 2022 | WIVA P&G Conference, Graz

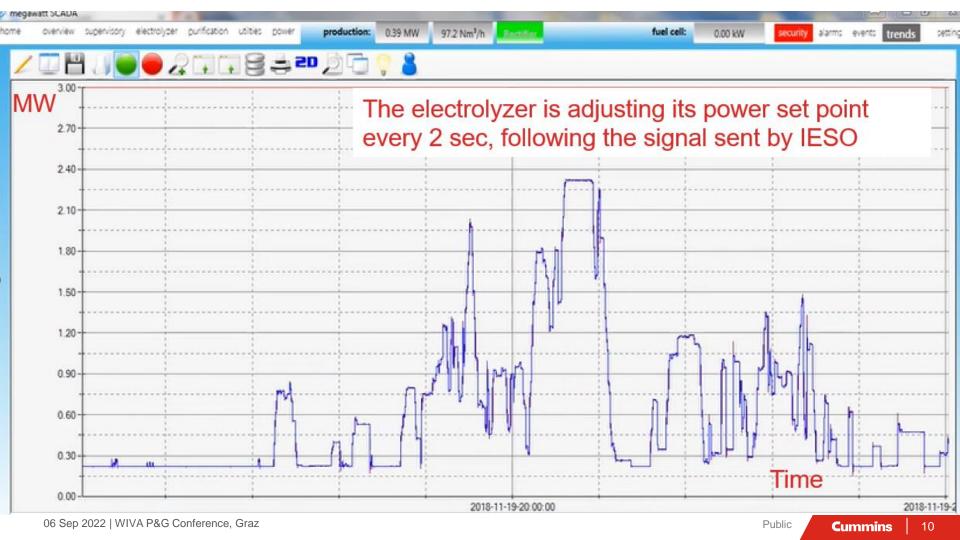
1 HYSTAT® ALKALINE ELECTROLYSERS : Balance of plant

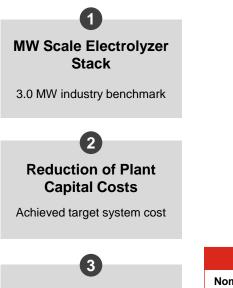
600+ INDUSTRIAL REFERENCES WITH PRESSURIZED ALKALINE ELECTROLYSIS TECHNOLOGY HySTAT®

PEM Hylyzer® Water Electrolysis Key Milestones

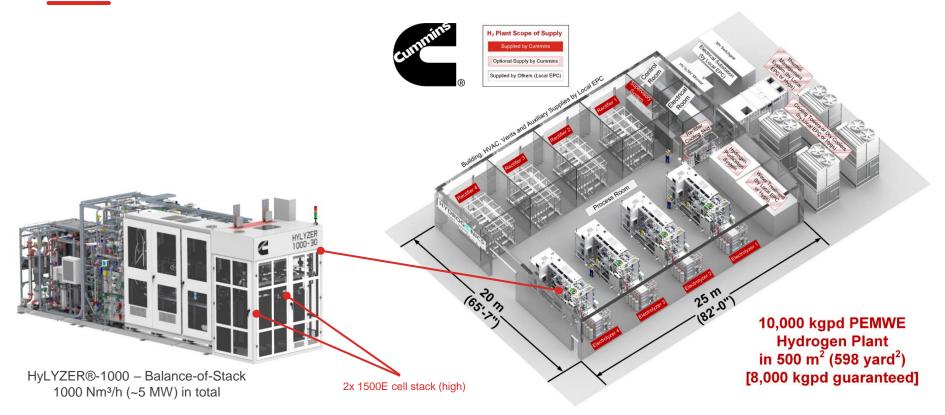
SELECTION OF Hylyzer® References







LATEST DEVELOPMENT 2,5 MW PEM CELL STACK


Stack Efficiency Improvements Leading industry performance

	1500E cell stack (high)	1500E cell stack (small)
Nominal input power	2,5 MW	1,25 MW
(Max)	(3 MW)	(1,5 MW)
Nominal H2 flow	500 Nm³/h	250 Nm³/h
(Max)	(620 Nm³/h)	(310 Nm³/h)
Operating pressure	30 barg	30 barg

WORLD'S LARGEST PEM ELECTROLYZER 20 MW / 4x Hylyzer®-1000

World's Largest PEM Electrolyzer 20 MW

More info & video tour: https://www.cummins.com/news/2021/10/04/video-case-studycummins-hylyzerr-pem-electrolyzer-becancour-quebec

COST REDUCTION LEVIES (CAPEX & OPEX) FOR PEM ELECTROLYZERS

- Product standardization : key technology blocks
- Innovative product design : robust & reliable, compact (low footprint), modular (easy to transport), plug&play (reduced installation costs), design to manufacture, design to service, easy to integrate
- Cell stack upscaling: more cells, larger active areas, thinner membrane and higher current densities
- Materials and components: MEA improvements (efficiency, durability), reduction of iridium and platinum loading
- Product upscaling (towards XXL electrolyzer solutions): "bigger is better"
- Power transfo/rectifiers optimization (larger rectifiers powering more stacks)
- Vertical integration and supply chain optimization
- Manufacturing upscaling

3 SOLID OXIDE ELECTROLYSIS - SOEC

- High operating temperatures of 800C or greater lead to higher efficiency thanks to thermal energy
- Solid ceramic electrolyte: no precious metals required in system, leading to affordable and readily available materials
- Able to produce hydrogen and other syngas through
 recycling of CO2 or renewable energy sources and water
- Ideal for industrial processing applications with excess steam
 or high-grade heat
- SOEC technology currently in development and producing hydrogen

CUMMINS CONTINUES EFFORTS TO SCALE GREEN HYDROGEN PRODUCTION WITH \$5 MILLION DOE ELECTROLYZER PROJECT

Sep 27, 2021 • Columbus, indiana

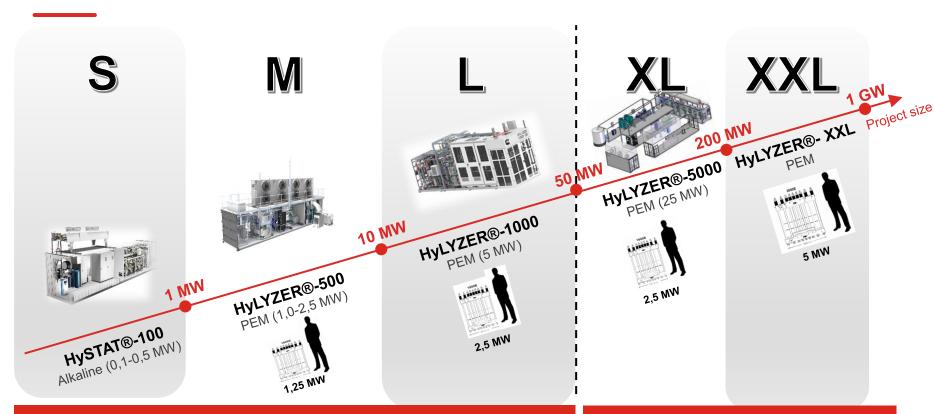
https://www.cummins.com/news/releases/2021/09/27/cumminscontinues-efforts-scale-green-hydrogen-production-5-million-doe

15

ANION EXCHANGE MEMBRANE - AEM Electrolysis

- Project Anione : Anion Exchange Membrane Electrolysis for Renewable Hydrogen Production on a Wide-Scale
- Objectives:
 - develop high-performance, cost-effective and durable anion exchange membrane (AEM) water electrolysis technology
 - combine the advantages of proton exchange membrane and liquid electrolyte alkaline technologies
 - validate a 2 kW AEM electrolyzer prototype (H2 flow: ~0.4 Nm³/h)
 - develop innovative reinforced anion exchange membranes in conjunction with non-critical raw material electrocatalysts with high surface areas and membrane-electrode assemblies.
- Duration: Jan 2020 Dec 2022
- Preliminary results: <u>https://anione.eu/planned-achieved/</u>
- This project has received funding from the European Union's Horizon 2020 research and innovation programme (Fuel Cells and Hydrogen 2 Joint Undertaking) under Grant Agreement no. 875613.

Project


Involved Partners

ELECTROLYZER PRODUCT OFFERING

Commercially available today

Under development

06 Sep 2022 | WIVA P&G Conference, Graz

WE ARE EXPANDING OUR ELECTROLYZER MANUFACTURING CAPACITY ON 3 CONTINENTS

Country	Belgium	Spain	Canada	China	China
City	Oevel	Guadalajara	Mississauga	Shangai	Foshan
Status	Extension	New	Extension	New	New
HySTAT stacks & systems	•				
HyLYZER PEM cell stacks	•		•	•	
HyLYZER PEM systems	•	•	•		● (in JV with Sinopec)

* Based of publicly announced plans by Cummins

GLOBAL ANNUAL CAPACITY: 2+ GIGAWATTS IN 2023

KEY MESSAGES

- 1. Cummins (through Hydrogenics) has more than 70 years of history, delivering water electrolyzers to the industry
- 2. Various technologies (will) co-exist with their pro's and con's and with various maturity levels: there is "no one fit's all" solution
- 3. The industry is scaling up its products and manufacturing capacity rapidly to respond to the increasing demand for electrolyzers (from MW to GW)
- Cummins is mainly focusing today on PEM technology (HyLYZER®-XXL) for large scale electrolyzer projects and has delivered the World's Largest PEM electrolyzer (20 MW, 12/2020)
- 5. Cummins is developing also other high potential electrolyzer technologies such as SOEC and AEM.

<u>Contact:</u> Christoph Zahn – Sales Manager- Electrolyzers Email: <u>Christoph.zahn@cummins.com</u>

THANK YOU

Cummins

HY DROGENIC