Climate Neutral Steelmaking

Linz, November 27th, 2023

Michael Zarl

Coordinated by

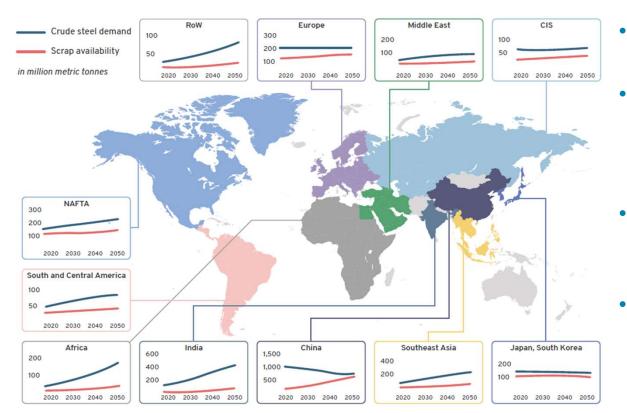
Financially supported by

 Federal Ministry
 Republic of Austria
 Labour and Economy
 Climate Action, Environment, Energy, Mobility, Innovation and Technology

Mitigation Strategies Overview of CO₂ mitigation pathways

Groups	CIRCULAR ECONOMY Enhancing the recycling of steel (e.g. scrap in BOF/EAF) and its by-products, Resource efficiency				
ays /	SMART CARBON USAGE (+CCS)		CARBON DIRECT AVOIDANCE		
Pathways	Process Integration with reduced use of carbon (+CCS)	Carbon Valorisation / Carbon Capture and Usage (+CCS)	Hydrogen-based metallurgy	Electricity-based metallurgy	
escription	PI	CCU	H ₂	Electr.	
LESC	Integration of process steps and internal use of process gases	Using CO/CO_2 from steel mill as raw material (chem. conversion of CO/CO_2)		basic steel-making e.g. production of place carbon	
	HIsarna, TGR-BF-Plasma S (IGAR), PEM, STEPWISE,	teelanol, Carbon2Chem, FReSMe, Everest, Carbon2Value	•	e, SuSteel , Hybrid Steel Making), , Hydrogen Hamburg, SIDERWIN	

Exploring Pressing Questions


Why don't we use only scrap-based processes?

Technology development OBM

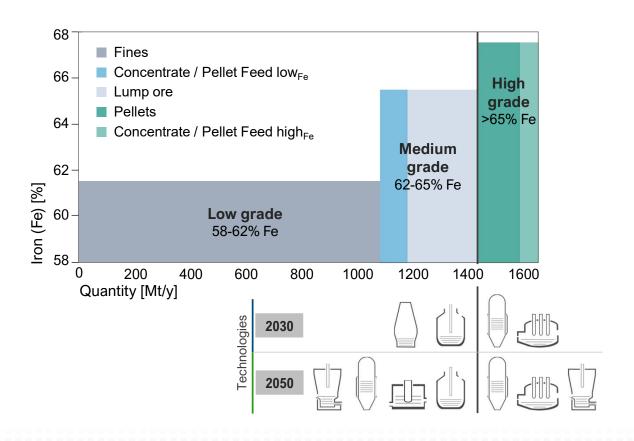
Global trend for scrap availability

- Crude steel demand will be 30 %
 higher in 2050 than it is today
- Much of this growth will be in emerging economies with declining demand in China, Europe, Japan, and South Korea
- Contribution of scrap in the total steel charge will likely grow to 40 % in 2050 from 30 % than today
- Process technologies for OBM (ore based metallics) will have an important role in future CO₂ neutral steelmaking

https://missionpossiblepartnership.org/

Exploring Pressing Questions

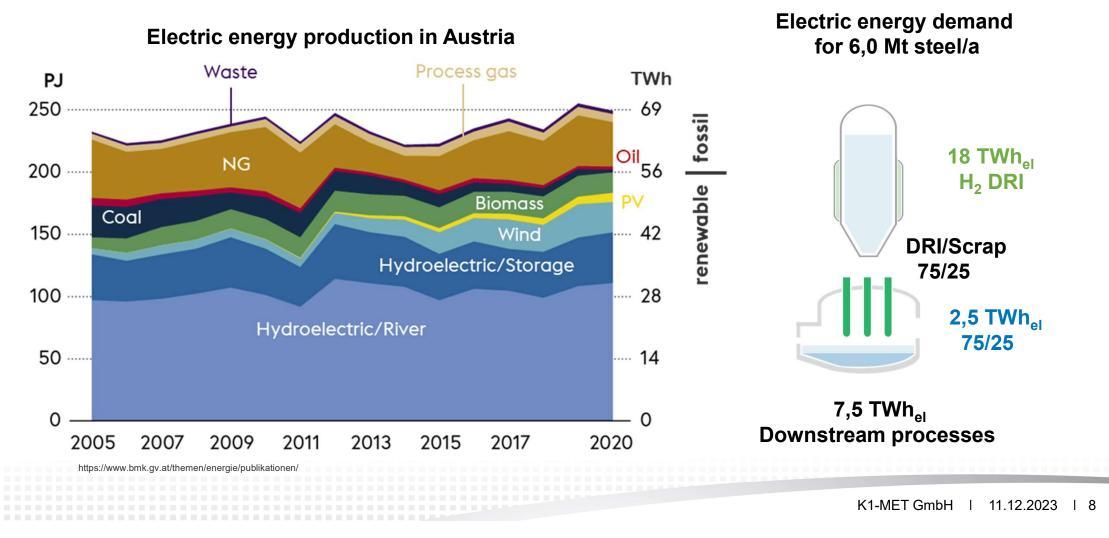
Why don't we only use scrap based high grade ore processes?


Technology development OBM

Iron ore qualities

- Global iron ore market is dominated by low and medium-grade iron ores
- High-grade sea born iron ores are available in limited quantities
- 75% of all beneficiated iron ores are fines

Exploring Pressing Questions

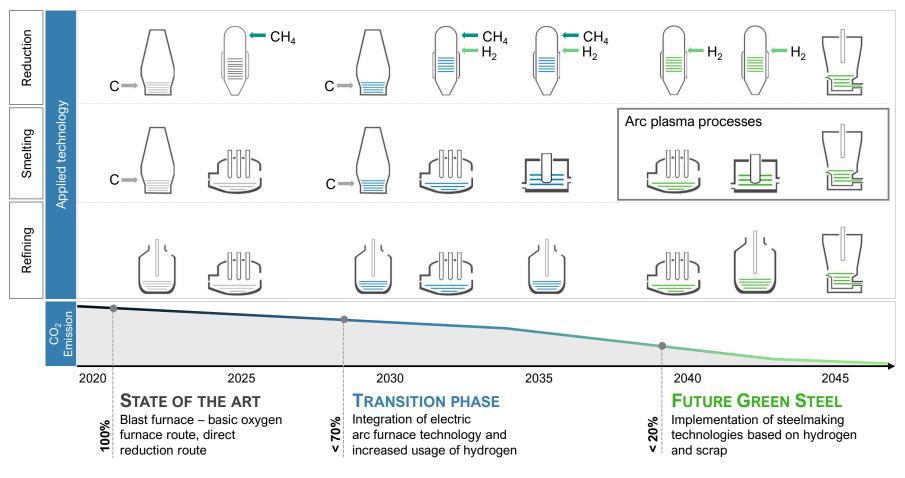


Why don't we just use scrap based high grade ore hydrogen based DR-processes?

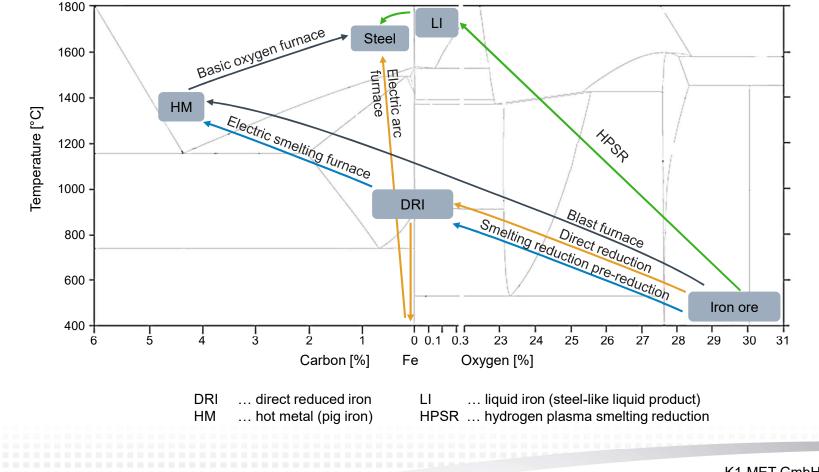
Replacement of fossil energy

Electricity demand for climate neutral steelmaking

Exploring Pressing Questions


So what to do?

How is steel going to be produced?


Transition process towards green steel

Steelmaking process routes

HPSR process in detail

VAP&G / SuSteel follow-up 📳 metallurgical competence center

PILOT PLANT SUSTEEL

The SuSteel project has the potential to become a breakthrough technology in the production of steel and is an essential part of voestalpine's "greentec steel" step-by-step plan for green steel production by 2050. SuSteel replaces fossil reducing agents such as coke, coal or natural gas with 100% hydrogen. 022-09-01 12: 2

1 HYDROGEN AND **IRON ORE SUPPLY** Hydrogen and iron ore are fed to the plant.

2 ELECTRIC ARC FURNACE The DC electric arc furnace is the heart of the plant. The reactions take place in the transferred arc.

3 ELECTRODE Iron ore and hydrogen enter the reaction zone of the arc via a hollow electrode.

4 **REACTION ZONE**

Hydrogen is ionised into plasma and the iron ore is melted and reduced in one step. Crude steel is produced.

5 END PRODUCT: WATER VAPOUR At the end of the process, only water vapour escapes. CO₂ emissions are fully avoided.

Hydrogen plasma smelting reduction pilot

Process developement Sustainable Steel (SuSteel)

SuSteel follow-up a

- Fundamental research project for direct steelmaking from iron oxides with H₂ plasma smelting reduction (HPSR)
- Verify of process concept with batch operation in a DC electric arc furnace (EAF) with 250 kVA
- Upscaling of the technology from 100 g to 50 kg tapping weight
- Creating design parameters for an increased reactor size and continuous operation
- Demo plant for this breakthrough technology is located at voestalpine Donawitz site

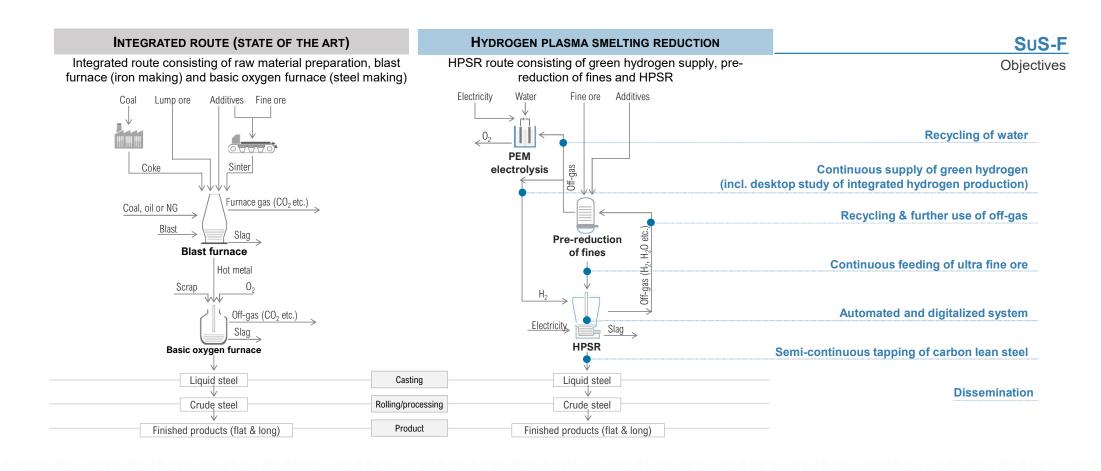
SuSteel pilot plant

Commissioning of the pilot plant

 (\mathbf{I})

K1-MET GmbH | 11.12.2023 | 14

ME⁻


metallurgical competence center

WIVAP&G

/ SuSteel follow-up 🔳

Technological tasks for upscaling

History and outlook to a continuous process

1998	First trials Construction of a plasma smelting reactor in laboratory scale and first trials	Conceptual design of the electrolysis system	► TERL 7
	6007 - 9 Analysis of different concepts (plasma, feeding system, reactor geometry) Construction of a demo plant at voestalpine	9 2020 2021 2022 Fundamentals of hydrogen reduction Process variations to achieve economic optimization Optimization of raw material input Concept for upscaling and continuous operation Image: Concept for upscaling and continuous operation Image: Concept for upscaling for upscaling and continuous	20232023202420252025+Continuous HPSR process developmentProcess variations to achieve economic optimizationParameter evaluation for continuous operationDesign of a pilot plant layoutImage: Image: Imag

Thank you! Questions?

Linz, November 27th, 2023

Michael Zarl

Coordinated by

Financially supported by

 Federal Ministry
 Republic of Austria
 Labour and Economy
 Climate Action, Environment, Energy, Mobility, Innovation and Technology