SuS-F

SuS-F

Sustainable Steelmaking – follow up

Projektbeschreibung

Europa ist im Wandel zu einer klimaneutralen, wettbewerbsfähigen und kreislauforientierten bzw. ressourceneffizienten Wirtschaft und hat sich mit dem Green Deal ambitionierte Ziele gesetzt. Die Eisen- und Stahlindustrie ist ein zentraler Teil der europäischen Wirtschaft und muss sich zur Erreichung der Klimaziele und der damit einhergehenden Umstellung auf eine CO2-neutrale Produktion bis 2050 diversen Herausforderungen stellen.

Wasserstoffplasma Schmelzreduktion (HPSR):
– Hochwertiger Stahl
– in einem Prozessschritt vom Eisenerz zum Stahl
– CO2-neutral bei Einsatz von grünem Wasserstoff und grünem Strom
– aus einem (semi-)kontinuierlicher Prozess

SuSteel Plant
Die geplanten Maßnahmen sollen die Weichen für ein weiteres Upscaling und die Integration in etablierte Stahlproduktionsstandorten dieser global einzigartigen Reduktionstechnologie für die Stahlherstellung aus Eisenerzen in einem Prozessschritt stellen. Damit kann ein wesentlicher Beitrag für den Meilenstein in Richtung Dekarbonisierung der Stahlproduktion durch den industriellen Einsatz von grünem Wasserstoff als Reduktionsmittel erreicht werden. Auf diese Weise soll eine nachhaltige Entwicklung Europas bei gleichzeitiger Sicherung des Wirtschaftsstandortes Österreich gewährleistet werden. Darüber hinaus soll dieses Projekt als Anreiz für den Fortschritt und die Stärkung der Entwicklungen im Wasserstoffsektor dienen.

Factsheet

Publikationen

Hydrogen plasma smelting reduction process monitoring with optical emission spectroscopy – Establishing the basis for the method.

In the world of ever-increasing demand for carbon-free steel, hydrogen and recycling have an undeniable role in achieving net-zero carbon dioxide emissions for the steel industry. However, even though steel is one of the most recycled materials globally, the quantity of steel that can be made from recycled steel will probably not match the demand in the future. This in turn means that steel must be also produced from the conventional resource, the iron ore. Hydrogen has been proposed as an environmentally friendly alternative to carbon as a reducing agent. To tackle the problems related to the usage of hydrogen for this purpose, hydrogen plasma smelting reduction has been studied extensively in the last few years. This article aims to provide means for process control of the hydrogen plasma, which may show erratic and chaotic behavior during the smelting process. The method used is optical emission spectroscopy, with which the plasma can be characterized, its composition can be evaluated, and its temporal evolution can be assessed. This study sheds light on how the plasma behaves with different electrode gaps and flow gas compositions together with how the position of the arc with respect to the center of the crucible can be assessed. In Ar/H2 plasma, the plasma temperatures derived with OES varied between 4000 and 10000 K, and up to a 26% decrease in electron density was observed when increasing the electrode gap in 1 cm increments.
Source: Pauna H., Ernst D., Zarl M., Aula M., Schenk J., Huttula M., Fabritius T. (2022): Hydrogen plasma smelting reduction process monitoring with optical emission spectroscopy – Establishing the basis for the method. In: Journal of Cleaner Production 372 (2022) 13375

 

Effects of the Electrodes’ Shape and Graphite Quality on the Arc Stability During Hydrogen Plasma Smelting Reduction of Iron Ores.

Reducing greenhouse gases (GHG), especially CO2, is necessary to counteract climate change. The European steel industry currently corresponds to 5.7% of the total EU emissions and must therefore minimize their GHG fractions in the future. One of the most promising technologies to eliminate CO2 emissions while directly reducing iron ore to steel in a single step is the hydrogen plasma smelting reduction. The stability of the plasma arc, which is determined by the properties and geometry of the graphite electrode, has a substantial impact on the process’ economic feasibility. To study the arc stability concerning the graphite quality, tip geometry, and electrode gap, a series of experiments is conducted. The results are evaluated to create stability maps and fields to identify stable process parameters. The geometry of the graphite cathode shows the primary influence on arc stability. Tips with a flat end (standard version) offering the most unstable and a machined step on the graphite cathode providing the most stable conditions. However, an additional coating to prevent side arcing leads to the deterioration of the arc. The two graphite grades tested, with different maximum grain sizes and price classes, show no great relevance to the stability of the arc.
Source: Ernst D., Zarl M. A., Farkas M. A., Schenk J. (2023): Effects of the Electrodes’ Shape and Graphite Quality on the Arc Stability During Hydrogen Plasma Smelting Reduction of Iron Ores. In: steel research int. 2023, 94, 2200818

 

Impact of Iron Ore Pre-Reduction Degree on the Hydrogen Plasma Smelting Reduction Process.

To counteract the rising greenhouse gas emissions, mainly CO2, the European steel industry needs to restructure the current process route for steel production. Globally, the blast furnace and the subsequent basic oxygen furnace are used in 73% of crude steel production, with a CO2 footprint of roughly 1.8 t CO2 per ton of produced steel. Hydrogen Plasma Smelting Reduction (HPSR) utilizes excited hydrogen states with the highest reduction potentials to combine the simultaneous reduction and smelting of iron ore fines. Due to the wide range of iron ore grades available worldwide, a series of hydrogen plasma experiments were conducted to determine how pre-reduced iron ore and iron-containing residues affect reduction behavior, hydrogen consumption, overall process time, and metal phase microstructure. It was discovered that, during the pre-melting phase under pure argon, wet ore increased electrode consumption and hematite achieved higher reduction levels, due to thermal decomposition. The reduction of magnetite ore yielded the highest reduction rate and subsequent hydrogen conversion rates. Both hematite and magnetite exhibited high utilization rates at first, but hematite underwent a kinetic change at a reduction degree of 80–85%, causing the reduction rate to decrease. In comparison to fluidized bed technology, it is possible to use magnetite directly, and the final phase of the reduction can move along more quickly due to higher temperatures, which reduces the overall process time and raises the average hydrogen utilization. A combination of both technologies can be considered advantageous for exhaust gas recycling.
Source: Ernst D., Manzoor U., Souza Filho I. R., Zarl M. A., Schenk J. (2023): Impact of Iron Ore Pre-Reduction Degree on the Hydrogen Plasma Smelting Reduction Process. In: Metals 2023, 13, 558.

Projekt News

Keine Ergebnisse gefunden

Die angefragte Seite konnte nicht gefunden werden. Verfeinern Sie Ihre Suche oder verwenden Sie die Navigation oben, um den Beitrag zu finden.

SuSteel Logo

Klimafonds Logo